11-01A Defining and Using Sequences

Sequence					
Function whose domain are					
List of numbers that follow a					
• 2, 4, 6, 8, 10					
0					
• 2, 4, 6, 8, 10,					
0					
Rule					
	$a_n = 2n$				
• Domain: (<i>n</i>)					
• Term's (1st, 2nd, 3rd	^d)				
• Range: (a_n)					
o Term's (2, 4, 6, 8	.)				
Write the first four terms of			 	 	
$a_n = \frac{1}{2}n - 3$	$f(n) = 4^{n-1}$				
Writing rules for sequences					
Writing rules for sequences • Look for			 		
 Look for and 			 	 	
 Look for and For fractions, do top and bottom 					
 Look for	3.1, 3.8, 4.5, 5.2,			 	
 Look for and For fractions, do top and bottom 	3.1, 3.8, 4.5, 5.2,				
 Look for and For fractions, do top and bottom 	3.1, 3.8, 4.5, 5.2,				
 Look for and For fractions, do top and bottom 	 3.1, 3.8, 4.5, 5.2,				
 Look for and For fractions, do top and bottom 		···			
 Look for	40				
 Look for					
 Look for	40				
 Look for	40 30 20				
 Look for	40 30				
 Look for	40 30 20	····		5	

11-01B Defining and Using Series

Series _____ of a sequence $2, 4, 6, 8, \dots \rightarrow ____$ $2 + 4 + 6 + 8 + \dots \rightarrow _____$ • Summation Notation (Sigma Notation) Finite $2 + 4 + 6 + 8 = \sum_{i=1}^{4} 2i$ $2 + 4 + 6 + 8 + \dots = \sum_{i=1}^{\infty} 2i$ Infinite Write as a summation $4 + 8 + 12 + \dots + 100$ 7 + 10 + 13 + 16 + 19Find the sum of the series $\sum_{k=5}^{10} k^2 + 1$ $\sum_{i=2}^{8} \frac{2}{i}$

Some shortcut formulas

$$\sum_{i=1}^{n} 1 = n$$
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

Algebra 2 11-01B

 $\sum_{i=10}^{25} i$

```
Find the sum of the series

\sum_{k=1}^{10} 3k^2 + 2
```

600 #25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 63, 65, 67, 69 = 15

11-02 Analyzing Arithmetic Sequences and Series

Arithmetic Sequences

- Common ______ (*d*) between successive terms
- _____ the same number each time
- 3, 6, 9, 12, 15, ... • d = _____

Is it arithmetic? -10, -6, -2, 0, 2, 6, 10, ...

1, -1, -3, -5, -7, ...

Formula for *n*th term

 $a_n = a_1 + (n-1)d$

Write a rule for the *n*th term 32, 47, 62, 77, ...

51, 48, 45, 42, ...

One term of an arithmetic sequence is $a_8 = 50$. The common difference is 0.25. Write the rule for the *n*th term.

 $a_{11} = 43, d = 5$

Two terms of an arithmetic sequence are $a_5 = 10$ and $a_{30} = 110$. Write a rule for the *n*th term.

Sum of a finite arithmetic series

Formula

$$S_n = n\left(\frac{a_1 + a_n}{2}\right)$$

Consider the arithmetic series $20 + 18 + 16 + 14 + \cdots$

Find the sum of the first 25 terms.

 $\sum_{i=1}^{20} (2i-3)$

You put money in a jar at the end of each week. The first week you put \$2 in the jar, and each subsequent week you put \$2 more than the previous week in the jar.

a. Write a rule for the amount of money you put in the jar at the end of the *n*th week.

b. How much money is in the jar after 9 weeks?

608 #1, 5, 9, 13, 17, 19, 21, 25, 29, 33, 37, 41, 43, 45, 50, 63, 65, 67, 72, 75 = 20

. . .

Algebra 2

11-03 Analyzing Geometric Sequences and Series

Geome	etric Sequence		
•	Created by	by a common (<i>r</i>)	
Are the	ese geometric sequenc	ices?	
1, 2, 6,	24, 120,	96, 48, 24, 12, 6,	
Form	ula for <i>n</i> th term		
		$a_n = a_1 \cdot r^{n-1}$	
•			
Write a	a rule for the <i>n</i> th term a	and find a_8 .	
5, 2, 0.8	3, 0.32,	112, 56, 28, 14,	

One term of a geometric sequence is $a_4 = 3$ and r = 3. Write the rule for the n^{th} term.

One term of a geometric sequence is $a_4 = -192$ and r = 4. Write the rule for the n^{th} term.

If two terms of a geometric sequence are $a_2 = -4$ and $a_6 = -1024$, write rule for the n^{th} term.

Algebra 2 11-03 Sum of geometric series

$$S_n = a_1 \left(\frac{1-r^n}{1-r}\right)$$

Find the sum of the first 10 terms of $4 + 2 + 1 + \frac{1}{2} + \cdots$

 $\sum_{i=1}^{8} 5\left(\frac{1}{3}\right)^{i-1}$

You tell the Gospel to your friends. Four of your friends tell the Gospel to their friends, then four of each of their friends tells the Gospel, and so on. Find the total number of people who told the Gospel to others after the eighth round.

616 #1, 5, 13, 17, 19, 23, 27, 31, 35, 37, 41, 43, 44, 47, 53, 63, 65, 66, 68, 70 = 20

11-04 Finding Sums of Infinite Geometric Series

Find the partial sums for n = 1, 2, 3, 4, 5 and describe what happens to S_n as n increases. $\frac{1}{5} + \frac{1}{10} + \frac{1}{20} + \frac{1}{40} + \frac{1}{80} + \cdots$ $4 + \frac{12}{5} + \frac{36}{25} + \frac{108}{125} + \frac{324}{625} + \cdots$ Sum of an infinite geometric series $S = \frac{a_1}{1 - r}$ | *r* | < 1 ٠ • If |r| > 1, then no sum (∞) Find the sum $\sum_{i=1}^{\infty} 2(0.1)^{i-1}$ $2 + \frac{6}{4} + \frac{18}{16} + \frac{54}{64} + \cdots$

A pendulum that is released and swings freely travels 100 centimeters on the first swing. On each successive swing, the pendulum travels 96% of the distance of the previous swing. What is the total distance the pendulum travels?

Write 0.27272727... as a fraction.

Write 32.323232... as a fraction.

623 #1, 3, 5, 7, 9, 1 1, 13, 15, 17, 19, 21, 25, 27, 29, 31, 33, 35, 37, 39, 41 = 20

11-05 Using Recursive Rules with Sequences

Explicit Rule	
Gives the <i>n</i> th term	
• $a_n = 2 + 4n$	
Recursive Rule	
 Each term is found by knowing the 	
• $a_1 = 6; a_n = a_{n-1} + 4$	
Write the first 5 terms	
$a_1 = 3, \ a_n = 2a_{n-1} - 1$	$a_1 = 2; a_n = (a_{n-1})^2 + 1$
Special Recursive Rules	
Arithmetic Sequence	Geometric Sequence
$a_n = a_{n-1} + d, \ a_1 = a_1$	$a_n = r \cdot a_{n-1}, \ a_1 = a_1$
Write the rules for the arithmetic sequence where a_1 =	
Explicit	Recursive
Write the rule for the geometric sequence where $a_1 = 4$	and $r = 0.2$
Explicit	Recursive
Write a monuming rule for	
Write a recursive rule for	
Write a recursive rule for 1, 1, 4, 10, 28, 76,	44, $11, \frac{11}{4}, \frac{11}{16}, \frac{11}{64}, \dots$
	44, $11, \frac{11}{4}, \frac{11}{16}, \frac{11}{64}, \dots$
	44, $11, \frac{11}{4}, \frac{11}{16}, \frac{11}{64}, \dots$

Write a recursive rule for $a_n = 30 - 5n$ $a_n = 12(11)^{n-1}$

Write an explicit rule for each sequence. $a_1 = 7, a_n = a_{n-1} + 4$

 $a_1 = -2; a_n = 3a_{n-1}$

A controlled laboratory contains about 500 mosquitoes. Each day, 100 new mosquitoes hatch, but the population declines 85% due to a pesticide and natural causes.

a. Write a recursive rule for the number a_n of mosquitoes at the start of the n^{th} day.

b. Find the number of mosquitoes at the start of the fourth day.

c. Describe what happens to the population of mosquitoes over time.

You borrow \$2000 to travel. The loan has a 9% annual interest rate that is compounded monthly for 2 years. The monthly payment is \$91.37.

a. Find the balance after the fifth payment.

b. Find the amount of the last payment.

Name:

Algebra 2

11-Review

Take this test as you would take a test in class. When you are finished, check your work against the answers. 11-02 to 11-03

Tell whether the sequence is arithmetic, geometric, or neither.

- 1. 4, 9, 14, 19, 24
- 2. 10, 20, 40, 80, 160
- 3. 1, 2, 6, 24, 120

Write the first four terms of the sequence.

- 4. $a_n = 3n + 2$
- 5. $a_n = 2n^2 + 1$

6.
$$a_1 = 3, a_n = 5(a_{n-1})$$

Write the next term of the sequence, and then write the explicit rule for the *n*th term.

- 7. 15, 17, 19, 21, ...
- 8. 2, 6, 18, 54, ...
- $\frac{1}{3}, \frac{3}{4}, \frac{5}{5}, \frac{7}{6}, \dots$ 9.

Find the sum of the series. (Show work.)

10.
$$\sum_{i=1}^{100} 2i + 1$$

12.
$$\sum_{i=1}^{3} i^{2}$$

12.
$$\sum_{i=1}^{3} i^{2}$$

13.
$$\sum_{i=2}^{5} i!$$

<u>11-04</u>

14.

$$\sum_{i=1}^{\infty} 3\left(\frac{1}{2}\right)^{i-1}$$

Write the repeating decimal as a fraction in lowest terms. (Show work.)

- 15. 0.8787878787...
- 16. 1.23123123123...

11-05

Write a recursive rule for the sequence.

- 17. 12, 19, 26, 33, 40, ...
- 18. 10, 30, 90, 270, ...
- 19. 3, 4, 7, 11, 18, 29, ...

Word Problems.

- 20. (11-03) The value of a certain car is 85% of the previous year's value each year. The value of the car after the first year is \$15,000. Find the explicit rule for the value of the car after *n* years. What is the value of the car after the 7th year?
- 21. (11-04) A company had a profit of \$350,000 in its first year. Since then, the company's profit has decreased by 12% per year. If this trend continues, what is an upper limit on the total profit the company can make over the course of its lifetime?

Answers	
Allswers	

-	
1.	Arithmetic
2.	Geometric
3.	Neither
4.	5, 8, 11, 14
5.	3, 9, 19, 33
6.	3, 15, 75, 375
7.	23; $a_n = 2n + 13$
8.	162; $a_n = 2(3)^{n-1}$
9.	$\frac{9}{7}; a_n = \frac{2n-1}{n+2}$
10.	10200
11.	3
12.	14
13.	152
14.	6
15.	29 33
16.	410 333
17.	$a_1 = 12, a_n = a_{n-1} + 7$
18.	$a_1 = 10, a_n = 3a_{n-1}$
19.	$a_1 = 3, a_2 = 4, a_n = a_{n-1} + a_{n-2}$
20.	$a_n = 15000(0.85)^{n-1}$; \$5657.24
21.	\$2,916,666.67